Cover
Vol. 3 No. 2 (2025)

Published: December 1, 2025

Pages: 43-53

Original Article

GIT Microbiome and Pharmacology: Implications for drug Metabolism and Therapeutic Outcomes

Abstract

Introduction and analysis: A comprehensive literature search was performed using PubMed and Google Scholar databases. The paper analyses works published within 2013 and 2025 were highlighted to ensure up-to-date judgements. Microorganism settle with all human body surfaces like gastrointestinal tract. Affecting broad of aspects regarding body physiological activities as a mediator, homeostasis, metabolism, inflammatory responses and most important is the interaction between gut microbiota enzymes and orally administered drugs. The review discuss many interventions regards microbiota within drugs that leads to hinder and fluctuates the bioavailability and effectiveness. Some interactions lead to reduce the efficacy of intake drugs while other may boost the therapy, by its effect on absorption, metabolism and reconditioning. A list of examples easy to access within database reveals the dug microbiota interaction by different mechanism, this review shows few examples upon different way of interaction to present a clear understands to such interventions. Conclusion: It is worthy to aim targeting the gut microbiota in different diseases, to assist in slow progression and improve the treatment. Therefore, by concentrating on all of these gaps and offering a genuine answer through creative methods, new trustworthy diagnostic tools, and microbiome targeted therapy, it is hoped to reduce response fluctuation and improve quality of life.

References

  1. Fouhy F, Watkins C, Hill CJ, et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun 2019;10:1517.
  2. Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;1:16203. doi:10.1038/nmicrobiol.2016.203
  3. Ahlawat S, Asha, Sharma KK. Gut-organ axis: a microbial outreach and networking. Lett Appl Microbiol. 2021 Jun;72(6):636-668. doi:10.1111/lam.13333
  4. Enright EF, Griffin BT, Gahan CGM, Joyce SA. Microbiome-mediated bile acid modification: role in intestinal drug absorption and metabolism. Pharmacol Res. 2018;133:170–186. doi:10.1016/j.phrs.2018.04.009
  5. De Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022 May;71(5):1020-1032. doi:10.1136/gutjnl-2021-326789
  6. Taylor MR, Flannigan KL, Rahim H, Mohamud A, Lewis IA, Hirota SA, et al. Vancomycin relieves mycophenolate–induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci Adv. 2019;5(8):eaax2358. doi:10.1126/sciadv.aax2358
  7. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836. doi:10.1042/BCJ20160510
  8. Tsunoda SM, Gonzales C, Jarmusch AK, et al. Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability. Clin Pharmacokinet 2021;60:971–984. doi:10.1007/s40262-021-01032-y
  9. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995;39:555-562
  10. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-11075
  11. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–214. doi:10.1038/nature11234
  12. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004;101:15718-15723
  13. Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ. Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 2014;5(10):1143–1163
  14. Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 2005;54:1182-1193
  15. Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B. 2021 Jul;11(7):1789-1812. doi:10.1016/j.apsb.2020.09.013
  16. Fernandes GJ, Kumar L, Sharma K, Tunge R, Rathnanand M. A review on solubility enhancement of carvedilol—a BCS Class II drug. J Pharm Innov. 2018;13:197–212
  17. Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm. 2017;43:177–189. doi:10.1080/03639045.2016.1269122
  18. Zou L, Ni ZL, Tsakalozou E, Giacomini KM. Impact of pharmaceutical excipients on oral drug absorption: a focus on intestinal drug transporters. Clin Pharmacol Ther. 2019;105:323–325. doi:10.1002/cpt.1292
  19. McCabe M, Sane RS, Keith-Luzzi M, Xu J, King I, Whitcher-Johnstone A. Defining the role of gut bacteria in the metabolism of deleobuvir: In vitro and in vivo studies. Drug Metab Dispos. 2015;43:1612–1618. doi:10.1124/dmd.115.064477
  20. Liang X, Bittinger K, Li XW, Abernethy DR, Bushman FD, FitzGerald GA. Bidirectional interactions between indomethacin and the murine intestinal microbiota. Elife 2015;4:e08973. doi:10.7554/eLife.08973
  21. Bander ZA, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: An overview. Int J Environ Res Public Health 2020;17(20):7657. doi:10.3390/ijerph17207657
  22. Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas 2018;112:53-63. doi:10.1016/j.maturitas.2018.03.012
  23. Nicholson JK, Wilson ID. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2:668–676. doi:10.1038/nrd1157
  24. Alpuim Costa D, Nobre JG, Batista MV, Ribeiro C, Calle C, Cortes A, et al. Human Microbiota and Breast Cancer-Is There Any Relevant Link?-A Literature Review and New Horizons Toward Personalised Medicine. Front Microbiol. 2021;12:584332
  25. Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, et al. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A 2020;117:7374–7381
  26. Gao S, Sun R, Singh R, Yu So S, Chan CTY, Savidge T, Hu M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov Today. 2022 Oct;27(10):103316. doi:10.1016/j.drudis.2022.07.001
  27. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013;341:295–298. doi:10.1126/science.1235872
  28. Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5:233–238. doi:10.4161/gmic.27915
  29. Togao M, Kawakami K, Otsuka J, Wagai G, Ohta-Takada Y, Kado S. Effects of gut microbiota on in vivo metabolism and tissue accumulation of cytochrome P450 3A metabolized drug: midazolam. Biopharm Drug Dispos. 2020;41:275–282
  30. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013;341:295–298. doi:10.1126/science.1235872
  31. Zhao R, Coker OO, Wu J, Zhou Y, Zhao L, Nakatsu G, et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 2020;159:969–983.e4. doi:10.1053/j.gastro.2020.05.004
  32. Jariwala PB, Pellock SJ, Goldfarb D, Cloer EW, Artola M, Simpson JB, et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem Biol. 2020;15:217–225. doi:10.1021/acschembio.9b00788
  33. Mulroy E, Bhatia KP. The gut microbiome: a therapeutically targetable site of peripheral levodopa metabolism. Mov Disord Clin Pract. 2019;6:547–548. doi:10.1002/mdc3.12828
  34. Malfatti MA, Kuhn EA, Murugesh DK, Mendez ME, Hum N, Thissen JB, et al. Manipulation of the gut microbiome alters acetaminophen biodisposition in mice. Sci Rep. 2020;10:4571. doi:10.1038/s41598-020-60982-8
  35. Wu B, Chen M, Gao Y, Hu J, Liu M, Zhang W, et al. In vivo pharmacodynamic and pharmacokinetic effects of metformin mediated by the gut microbiota in rats. Life Sci. 2019;226:185–192. doi:10.1016/j.lfs.2019.04.009
  36. Jarmusch AK, Vrbanac A, Momper JD, Ma JD, Alhaja M, Liyanage M, et al. Enhanced characterization of drug metabolism and the influence of the intestinal microbiome: a pharmacokinetic, microbiome, and untargeted metabolomics study. Clin Transl Sci. 2020;13:972–984. doi:10.1111/cts.12785
  37. Coombes Z, Yadav V, McCoubrey LE, Freire C, Basit AW, Conlan RS, et al. Progestogens are metabolized by the gut microbiota: implications for colonic drug delivery. Pharmaceutics. 2020;12(8):760. doi:10.3390/pharmaceutics12080760
  38. Jarmusch AK, Vrbanac A, Momper JD, Ma JD, Alhaja M, Liyanage M, et al. Enhanced characterization of drug metabolism and the influence of the intestinal microbiome: a pharmacokinetic, microbiome, and untargeted metabolomics study. Clin Transl Sci. 2020;13:972–984
  39. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 2015;52(12):7577-7587
  40. Togao M, Kawakami K, Otsuka J, Wagai G, Ohta-Takada Y, Kado S. Effects of gut microbiota on in vivo metabolism and tissue accumulation of cytochrome P450 3A metabolized drug: midazolam. Biopharm Drug Dispos. 2020;41:275–282
  41. Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express 2021;11:1–3. doi:10.1186/s13568-021-01210-5
  42. Ainonen S, Tejesvi MV, Mahmud MR, Paalanne N, Pokka T, Li W, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr Res. 2022;91(1):154-162. doi:10.1038/s41390-021-01565-2
  43. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, De Vos WM. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016;7:10410. doi:10.1038/ncomms10410
  44. Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Nalluri H, Kaiser T, et al. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome 2021;9:1–1. doi:10.1186/s40168-020-00897-4
  45. Maseda D, Ricciotti E. NSAID–gut microbiota interactions. Front Pharmacol. 2020;11:1153. doi:10.3389/fphar.2020.01153
  46. Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, et al. Gut microbiota in NSAID enteropathy: new insights from inside. Front Cell Infect Microbiol. 2021;11:679396. doi:10.3389/fcimb.2021.679396
  47. Huang Y, Lou X, Jiang C, Ji X, Tao X, Sun J, Bao Z. Gut microbiota is correlated with gastrointestinal adverse events of metformin in patients with type 2 diabetes. Front Endocrinol. 2022;13:1044030. doi:10.3389/fendo.2022.1044030
  48. Mohamed S. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine 2024;103(43):e40221. doi:10.1097/MD.00000000000040221
  49. Wei L, Wen XS, Xian CJ. Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways. Int J Mol Sci. 2021;22(17):9474. doi:10.3390/ijms22179474
  50. Xu F, Xie Q, Kuang W, Dong Z. Interactions between antidepressants and intestinal microbiota. Neurotherapeutics. 2023;20(2):359-371. doi:10.1007/s13311-023-01188-3
  51. Ayer D, Trovato A, Tadros M. Utilizing the Gut Microbiome as a Therapeutic Target for Liver Disease – Narrative Review. J Transl Gastroenterol. 2023;1(1):22-29. doi:10.14218/JTG.2023.00027
  52. Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease. World J Gastroenterol 2023;29(11):1651-1668
  53. Katasonov AB. Kishechnyi mikrobiom kak terapevticheskaya mishen' pri lechenii depressii i trevogi [Gut microbiome as a therapeutic target in the treatment of depression and anxiety]. Zh Nevrol Psikhiatr Im S S Korsakova. 2021;121(11):129-135. doi:10.17116/jnevro2021121111129
  54. Boppana K, Almansouri NE, Bakkannavar S, Faheem Y, Jaiswal A, Shergill K, Nath TS. Alterations in Gut Microbiota as Early Biomarkers for Predicting Inflammatory Bowel Disease Onset and Progression: A Systematic Review. Cureus 2024;16:e58080. doi:10.7759/cureus.58080
  55. Foppa C, Rizkala T, Repici A, Hassan C, Spinelli A. Microbiota and IBD: Current knowledge and future perspectives. Dig Liver Dis. 2024;56:911–922. doi:10.1016/j.dld.2023.11.015
  56. Jacobs JP, Goudarzi M, Singh N, Tong M, McHardy IH, Ruegger P, et al. A Disease-Associated Microbial and Metabolomics State in Relatives of Pediatric Inflammatory Bowel Disease Patients. Cell Mol Gastroenterol Hepatol. 2016;2:750–766. doi:10.1016/j.jcmgh.2016.06.004
  57. Zhang M, Liu J, Xia Q. Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp Hematol Oncol 2023;12:84. doi:10.1186/s40164-023-00442-x
  58. Kiousi DE, Kouroutzidou AZ, Neanidis K, Karavanis E, Matthaios D, Pappa A, Galanis A. The Role of the Gut Microbiome in Cancer Immunotherapy: Current Knowledge and Future Directions. Cancers (Basel) 2023;15(7):2101. doi:10.3390/cancers15072101
  59. Lu Y, Yuan X, Wang M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol. 2022;15:47
  60. Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science