Cover
Vol. 3 No. 2 (2025)

Published: December 1, 2025

Pages: 74-89

Original Article

Extracellular Lipase Production by Aspergillus niger Isolated From Industrial Oil Crops Using Submerged Fermentation

Abstract

The screening, production, and optimization of extracellular lipase from a fungus Aspergillus niger isolated from different sources were examined in this work. The isolated fungi were screened on tributyrin hydrolysis method to detect exogenous lipolytic activity. A promising lipase producing isolate of A. niger-6 was selected and identified as the highest lipaseproducing strain. The optimal conditions were determined for: inducer oil, carbon source, nitrogen source, initial pH value, incubation temperature, incubation period, inoculum size, and shaking speed for lipase production using one factor at a time approach. Maximum lipase production was observed in 1% olive oil, 2% glucose, 2g/l ammonium sulphate, pH6, 30°C, 5days, 1x106spores/ml-1, and 150 rpm, respectively.

References

  1. El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny El-Fakharany YAM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J Fungi. 2022;8(1):1-26
  2. Blamey JM, Fischer F, Meyer HP, Sarmiento F, Zinn M. Enzymatic biocatalysis in chemical transformations: A promising and emerging field in green chemistry practice. In: Biotechnology of Microbial Enzymes. Brahmachari G.(ed.). 2017, Elsevier Inc., India, Pages 347-403
  3. Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact. 2020;19(1):2-42
  4. Thapa S, Li H, Ohair J, Bhatti S, Chen FC, Al Nasr K, Johnson T, Suping Zhou S. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol Biotechnol. 2019;61(8):579–601
  5. Patel H, Ray S, Patel A, Patel K, Trivedi U. Enhanced lipase production from organic solvent tolerant Pseudomonas aeruginosa UKHL1 and its application in oily waste-water treatment. In: Biocatalysis and agricultural biotechnology. 2019. Elsevier BV. Vol. 28, India, p. 101731
  6. Lima LG, Gonçalves MM, Cour S, Melo VF, Ana GC, Costa AC. Lipase Production by Aspergillus niger C by Submerged Fermentation. Braz Arch Biol Technol. 2019;62:1-14
  7. Okino-Delgado, Prado DZ, Fleuri LF. Brazilian fruit processing wastes as a source of lipase and other biotechnological products: a review. An Acad Bras Ci. 2016;90(3):2927-2943
  8. Mahta A, Bodh U, Gupta R. Fungal lipases: a review. J Biotech Res. 2017;8:58-77
  9. Nadda AK. Lipase Production in Solid-State Fermentation (SSF): Recent Developments and Biotechnological Applications. DBPBMB. 2012;13-27
  10. Okayo RO, Andika DO, Dida MM, K’otuto GO, Gichimu BM. Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. Intl J Microbiol. 2020;1-10
  11. Dugan FM. The identification of fungi-An Illustrated introduction with keys, glossary, and guide to literature. L. Burketová (ed.). The American Phytopathological Society Press, St. Paul. 2006; Vol. 52, p. 360
  12. Kirk PM, Cannon P, Minter D, Stalpers J. Dictionary of the Fungi. 10th Edition. Wallingford, USA; 2008. 2600 pages
  13. Wu HS, Tsai MJ. Kinetics of tributyrin hydrolysis by lipase. Enzyme Microb Technol. 2004;35(6):488-493
  14. Ike FS, VC. Screening and Optimization of Process Parameters for the Production of Lipase in Submerged Fermentation by Aspergillus carbonarius (Bainer) IMI 366159. Annual Research and Review in Biology. 2014;4(16):2587-2602
  15. Kamande SM, Omwenga GI, Ngugi MP. Production of Cellulases by Xylaria sp. and Nemania sp. using Lignocellulose Substrates for Bioethanol Production from Maize Cobs. Heliyon. 2024;10(17):1-23
  16. Arzoglou P, Goudoula Tsantili CR, et al. Transferability of Lipase Titrimetric Assays: Deductions from an Interlaboratory Study. Eur J Clin Chem Clin Biochem. 1994;32(10):773-777
  17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254
  18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. J Anal Chem. 1959;31(3):426-428
  19. Chowdhury MK, Hoque MI, Sonnino A. Biosafety of Genetically Modified Organisms: Basic concepts, methods and issues. FAO, Rome; 2009. 293 pages
  20. Kiran KR, Divakar S. Lipase catalyzed synthesis of organic acid esters of lactic acid in non-aqueous media. J Biotechnol. 2001;87(2):109-121
  21. Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol. 2021;52(3):1257-1269
  22. Krzyczkowska J, Kozłowska M. Effect of Oils Extracted from Plant Seeds on the Growth and Lipolytic Activity of Yarrowia lipolytica Yeast. J Am Oil Chem Soc. 2017;94(5):661-671
  23. Ayinla ZA, Ademakinwa AN, Agboola FK. Studies on the Optimization of Lipase Production by Rhizopus sp. ZAC3 Isolated from the Contaminated Soil of a Palm Oil Processing Shed. J Appl Biol Biotechnol. 2017;5(2):30-37
  24. Maliszewska I, Mastalerz P. Production and some properties of lipase from Penicillium citrinum. Enzyme Microb Technol. 1992;14(3):190-193
  25. Sipiczki G, Micevic SS, Kohari-Farkas G, Nagy ES, Nguyen QD, Gere A, Bujna E. Effects of Olive Oil and Tween 80 on Production of Lipase by Yarrowia Yeast Strains. Processes. 2024;12(6):1206
  26. Lin ES, Ko HC. Glucose stimulates production of the alkaline-thermostable lipase of the edible Basidiomycete Antrodia cinnamomea. Enzyme Microb Technol. 2005;37(2):261-265
  27. Arul J, Ebenezer P. Extracellular lipase production by Penicillium citrinum isolated from petroleum contaminated soil. J Acad Indus Res. 2012;1(2):77-80
  28. Dheeman D, Frias J, Henehan G. Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39. J Mol Catal B Enzym. 2011;72(3-4):256-262
  29. Tan T, Zhang M, Xu J, Zhang J. Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem. 2004;39(11):1495–1502
  30. Oshoma CE, Kolawole ED, Ikenebomeh MJ. The influence of nitrogen supplementation on lipase production by Aspergillus niger using palm oil mill effluent. IJS. 2021;23(1):1-10
  31. Amin M, Bhatti HN. Effect of Physicochemical Parameters on Lipase Production by Penicillium fellutanum using Canola Seed Oil Cake as Substrate. IJAB. 2014;16(1):118-124
  32. Boratyński F, Szczepańska E, Grudniewska A, Gniłka R, Olejniczak T. Improving of hydrolases biosynthesis by solid-state fermentation of Penicillium camemberti on rapeseed cake. Sci Rep. 2018;8(1):10157
  33. Valéria MG, Lima G, Krieger N, et al. Effect of Nitrogen and Carbon Sources on lipase production by Penicillium aurantiogriseum. Food Technol Biotechnol. 2003;41(2):105–110
  34. Lakshmi L, Ram M. Production, purification and characterization of extracellular lipase from a mutated strain of Penicillium citrinum KU613360. IJSRST. 2021;8(1):111-120
  35. Arun KS, Sharma V, Saxena J, Arindam K. Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. AJB. 2016;15(41):2292-2300
  36. Hauka FIA, Ismail II, Hassan RA, Shady TSM. Optimization of lipase production in some microbes. J Agric Res. 1997;77(1):1-13
  37. Ahmed A, Badar R, Khalique N. Screening and optimization of submerged fermentation of lipolytic Aspergillus oryzae. Bio Res. 2019;14(4):7664-7674
  38. Shaheen I, Bhatti HN, Ashraf T. Production, purification and thermal characterization of invertase from a newly isolated Fusarium sp. under solid-state fermentation. Int J Food Sci Technol. 2008;43(7):1152-1158
  39. Xu TW, Xu JH, Yu W, Zhong JH. Investigating pH and Cu(II) effects on lipase activity and enantioselectivity via kinetic and spectroscopic methods. Biotechnol J. 2006;1(11):1293-1301
  40. Bharathi D, Rajalakshmi G. Microbial lipases: An overview of screening, production and purification. Biocatal Agric Biotechnol. 2019;22(3):101368
  41. Mukhtar H, ul Haq I, Nawaz A, Rehman A. Studies on the lipase production by Aspergillus niger through solid state fermentation. Pak J Bot. 2016;47(SI):351-354
  42. Mahmoud GA, Koutb K, Morsy F. Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. Eur J Biol Res. 2015;5(3):70-77
  43. Alabdalall AH, ALanazi NA, Aldakee SA, AbdulAzeez SA, Borgio JF. Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. PeerJ. 2020;8:1-20
  44. Hauka FI, Ismail II, Hassan AA, Shady TS. Optimization of lipase production in some microbes. Egypt J Agric Res. 1999;77(1):1-13
  45. Abdel-Fttah GM, Hammad I. Production of lipase by certain soil fungi. I: Optimization of cultural conditions and genetic characterization of lipolytic strains of Aspergilli using protein patterns and Random Amplified Polymorphic DNA (RAPD). Online J Biol Sci. 2002;2(10):639-644
  46. Licia MP, Cintia MR, Mario DB, Guillermo R. Catalytic properties of lipase extracts from Aspergillus niger. Food Technol Biotechnol. 2006;44(2):247–252
  47. Vaidehi BK, Jagdamba GV. Lipase activity of some fungi isolated from groundnut. Curr Sci. 1984;3:1253
  48. Musa H, Adebayo-Tayo BC. Screening of microorganisms isolated from different environmental samples for extracellular lipase production. AU J T. 2012;15(3):179-186
  49. Salihu A, Alam Z, Abdulkarim MI, Salleh HM. Lipase production: An insight in the utilization of renewable agricultural residues. Resour Conserv Recycl. 2012;58:36–44
  50. Treichel H, Oliveira DD, Mazutti MA, Luccio MD, Oliveira JV. A Review on Microbial Lipases Production. Food Bioprocess Technol. 2010;3(2):182–196
  51. Iftikhar T, Niaz M, Zia MA, ul-Haq I. Production of extracellular lipases by Rhizopus oligosporus in a stirred fermentor. Braz J Microbiol. 2010;41(4):1124–1132
  52. Suyanto E, Soetarto ES, Cahyanto MN. Production and Optimization of Lipase by Aspergillus niger using Coconut Pulp Waste in Solid State Fermentation. J Phys Conf Ser. 2019;1-7
  53. Abd El Aal RA, Shetaia YM, Shafei MS, Gomaaa SK, El Menoufya HA, El-Refai HA. Optimization of parameters for lipase production by Aspergillus niger NRRL-599 using response surface methodology. Egypt Pharm J. 2019;18(2):165-171
  54. Iftikhar T, Niaz M, Afzal M, Ul-Haq I, Rajoka MI. Maximization of intracellular lipase production in a lipase-overproducing mutant derivative of Rhizopus oligosporus DGM 31: A kinetic study. Food Technol Biotech. 2008;46(4):402-402
  55. Purwanto LA, Ibrahim D, Sudrajat H. Effect of agitation speed on morphological changes in Aspergillus niger hyphae during production of tannase. W J C. 2009;4(1):34-38
  56. Potumarthi R, Subhakar C, Anajakshi J, Jetty A. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa–MTCC 8737 in stirred tank reactor using molasses as sole production medium. Appl Biochem Biotechnol. 2008;151(2-3):700–710
  57. Ibrahim D, Weloosamy H, Lim SH. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J Biol Chem. 2015;6(3):265-271
  58. Venugopal T, Jayachandra KA, Appaiah A. Effect of aeration on the production of endopectinase from coffee pulp by a novel thermophilic fungi, Mycotypha sp. strain no. AKM1801. Biotechnol. 2007;6(2):245-250
  59. Seth M, Chand S. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori-optimization of process parameter. Process Biochem. 2000;36(1-2):39-44
  60. Znidarsic P, Pavko A. The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol. 2001;39(3):237-252