Cover
Vol. 1 No. 1 (2022)

Published: December 21, 2022

Pages: 32-38

Review Article

Assessments of active pharmaceutical ingredient and excipients in some pharmaceutical formulations

Abstract

Active Pharmaceutical Ingredient is a substance that considered as one of the important materials that enter into the manufacture of the final pharmaceutical product, and its activity. Pharmaceuticals have a significant impact on the treatment and diagnosis of pathological conditions, and thus reduce the economic burden of the disease. As well, it has a role in the restoration, correction, or modification of physiological functions in human. Excipients play an important role in a drug's performance, including bioavailability, improving solubility, preserving the PH, stability, and determining the profile of the release. The reduction in the production cost of active pharmaceutical ingredient is not only due to the reduction in workers' wages, beside to innovations in the production method, which could help to reduce the economic state. The excipients have an essential part in industry of drugs, which contain a dependable, repeatable production method that produces a more stable product over time and increasing patient compliance.

References

  1. Zappelli C, Barbulova A, Apone F, and Colucci G. Effective active ingredients obtained through biotechnology. Cosmetics. 2016;3(4):1–7. doi: 10.3390/cosmetics3040039.
  2. Manjunath A, and Kerur B. Studies of Pharmaceutical Active Ingredients in Drugs through Radiological Parameters. Phys Sci Int J. 2015;7(3):186–191. doi: 10.9734/psij/2015/18029.
  3. Chan. “The Effect of a Source Change for an Active Pharmaceutical Ingredient (API) or Excipient on the Finished Drug Product,” 2016.
  4. Patel H, Shah V, and Upadhyay U. New pharmaceutical excipients in solid dosage forms – A review. Int J Pharm Life Sci. 2011;2(8):1006–1019.
  5. Manchanda R, Arora SC, and Manchanda R. Tamarind seed polysaccharide and its modifications-versatile pharmaceutical excipients - A review. Int J PharmTech Res. 2014;6(2):412–420.
  6. Boehringer Ingelheim Ltd. Selective antagonist of alpha1a / 1d adrenoreceptor subtypes in the prostate and bladder. Boehringer Ingelheim Ltd. 5180 South Serv. Road Burlington, Ontario L7L 5H4, pp. 1–28, 2019.
  7. Jarallah HM. The effect of Sodium chloride and Cephalexin antibiotic on the growth of Leishmania tropica and Leishmania donovani promastigote. 2011;37(4):71–77.
  8. Klitgaard RN. Antibiotic Drug Discovery. Potentiation of the quinolones and targeting the initiation of DNA replication. no. February, 2018.
  9. Bar-Shalom D, and Rose K. Introduction. AAPS Adv. Pharm. Sci. Ser. 2014;11:5–8. doi: 10.1007/978-1-4899-8011-3.
  10. Salunke S, Brandys B, Giacoia G, and Tuleu C. The STEP (Safety and Toxicity of Excipients for Paediatrics) database: Part 2 - The pilot version. Int J Pharm. 2013;457(1):310–322. doi: 10.1016/j.ijpharm.2013.09.013.
  11. Giriraj P, and Sivakkumar T. Simultaneous estimation of dutasteride and tamsulosin hydrochloride in tablet dosage form by vierordt’s method. Arab J Chem. 2017;10:S1862–S1867. doi: 10.1016/j.arabjc.2013.07.013.
  12. Prakash AS. Excipients in formulations for clinical trials: Getting it right the first time. J Excipients Food Chem. 2011;2(4):95–97.
  13. Hussein MM, Saeed AM, and Ibraheem TK. RP-HPLC Developed Analytical Method for Cephalexin Determination in Pure and Pharmaceutical Preparations. 2020. doi: 10.13140/RG.2.2.11276.74882.
  14. Kalyani L, Venkata C, and Rao N. Stability indicating RP-HPLC method development and validation of cefepime and amikacin in pure and pharmaceutical dosage forms. Brazilian J Pharm Sci. 2013;54(3):1–9.
  15. Abdul R, Ghafil A, and Khdur RA. Formation, Identification, Bio Effect, Thermal Studying and Some Properties of Azo-Cyclic Derivatives. J Int Pharm Res. 2019;46(5):537–543.
  16. Hsu MC, Chung HC, and Lin YS. Liquid chromatographic determination of cephalexin preparations: Inter-laboratory validation. J Chromatogr. A. 1996;727(2):239–244. doi: 10.1016/0021-9673(95)01119-6.
  17. Quizon PM, et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Cephalexin Monohydrate. J Pharm Sci. 2020;109:1846–1862. doi: 10.1016/j.xphs.2020.03.025.
  18. Mohammad AA. Determination of Cefalexin by Direct (UV-Vis) Spectrophotometer and Indirect (Flame Atomic Absorption) Technique Introduction. 2009;18(1):49–55.
  19. Pires de Abreu L, Mas Ortiz RA, Calafatti de Castro S, and Pedrazzoli J. HPLC determination of amoxicillin comparative bioavailability in healthy volunteers after a single dose administration. J Pharm Pharm Sci. 2003;6(2):223–230.
  20. AbdulKadir AN. Spectrophotometric Determination of Vitamin B6 by Coupling with Diazotized p-Nitroaniline. Rafidain J Sci. 2010;21(8):49–59. doi: 10.33899/rjs.2010.36845.
  21. de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, and de Araújo JM. Antibiotics produced by Streptomyces. Brazilian J Infect Dis. 2012;16(5):466–471. doi: 10.1016/j.bjid.2012.08.014.
  22. Salvo F, De Sarro A, Caputi AP, and Polimeni G. Amoxicillin and amoxicillin plus clavulanate: A safety review. Expert Opin Drug Saf. 2009;8(1):111–118. doi: 10.1517/14740330802527984.
  23. Thambavita D, et al. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Amoxicillin Trihydrate. J Pharm Sci. 2017;106(10):2930–2945. doi: 10.1016/j.xphs.2017.04.068.
  24. Rasheed H. Development of simple and cost-effective High Performance Liquid Chromatography methods for quality control of essential beta-lactam antibiotics in low-and middle-income countries. 2019:1–243.
  25. Yang X. An Evaluation of Quality and Brands of Amoxicillin. 2019:1–81.
  26. Mo DMJ. Quantitative Analysis of Cephalexin Antibiotic by using Normal and Derivative spectrophotometric Methods. 2006.
  27. Kaur SP, Rao R, and Nanda S. Amoxicillin: A broad spectrum antibiotic. Int J Pharm Pharm Sci. 2011;3(3):30–37.
  28. Vandyke-Gonnerman AL, Reynolds SJ, Volckens J, and Ellis R. Comparative Analysis of Bacterial and Fungal Communities in Two Dairy Parlors Through the Use of Pyrosequencing, Riboprinting, Culture Techniques, and Microscopic Analysis. 2013.
  29. Sc C, and Sc COM. Factors affecting survival of bacteria on abiotic surfaces. PhD, Fac. Sci. Eng. Manchester Metrop. Univ., pp. 1–207, 2013.
  30. Kádár B. Examination of colistin-resistance in Gram-negative bacteria. PhD, Semmelweis Univ. Dr. Sch. Pathol. Sci. Superv., pp. 1–20, 2017.
  31. Doi Y, et al. Gram-negative bacterial infections: Research priorities, accomplishments, and future directions of the Antibacterial Resistance Leadership Group. Clin Infect Dis. 2017;64(Suppl 1):S30–S35. doi: 10.1093/cid/ciw829.
  32. Tiersma Y. β-Lactamase-producing bacteria How can I resist you? 2013.
  33. Buxeraud J, and Faure S. Beta lactam antibiotics. Actual Pharm. 2016;55(558 S):1–5. doi: 10.1016/j.actpha.2016.06.001.
  34. Singh VK, Mishra VK, Maurya JK, Singh SK, and Mishra A. Formulation and evaluation of cephalexin monohydrate reconstitutional oral suspension with piperin and their antibacterial activity. World J Pharm Res. 2014;3(5):821–831.
  35. Kulshreshtha AK, Singh ON, and Wall GM. Pharmaceutical suspensions: From formulation development to manufacturing, no. January 2010.
  36. Yagnesh TNS. Pharmaceutical Suspensions: Patient Compliance Oral Dosage. 2018; no. July. doi: 10.20959/wjpps201612-8159.
  37. Niazi SK. Stability Testing of New Drug Substances and Products. Handb Pharm Manuf Formul. 2020; August:31–40. doi: 10.1201/9781420048452-7.
  38. Bajaj S, Singla D, and Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;2(3):129–138. doi: 10.7324/JAPS.2012.2322.
  39. Kommanaboyina B, and Rhodes CT. Trends in stability testing, with emphasis on stability during distribution and storage. Drug Dev Ind Pharm. 1999;25(7):857–868. doi: 10.1081/DDC-100102246.