Cover
Vol. 3 No. 2 (2025)

Published: December 1, 2025

Pages: 103-121

Original Article

Smart and Responsive Drug Delivery Systemsfor Diabetic Ulcers: Advances in Pharmaceutical Design

Abstract

Diabetic ulcer is a significant medical issue affecting millions of patients globally due to consequential morbidity, mortality, and health care system costs. The complex pathophysiological process of delayed wound healing in diabetic patients remains inadequately addressed with conventional treatment modalities. This review summarises recent advances in smart, responsive engineered drug delivery systems for the treatment of diabetic ulcers. Moreover, we exemplify these strategies using emerging technologies, including nanotechnology, hydrogel matrices, stimulus-responsive systems, and bioactives. New methodologies, including next-generation approaches such as 3D-printed scaffolds, nanofiber systems, and theranostic platforms, are presented as alternative treatment options that could change the landscape of diabetes-related wound care. Discussions on the challenges of translation, regulation, and application of new pharma-technologies in clinical research are offered

References

  1. Strong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: a review. JAMA. 2023;330(1):62–75.
  2. Huang F, Lu X, Yang Y, et al. Microenvironment-based diabetic foot ulcer nanomedicine. Adv Sci. 2023;10(2):e2203308.
  3. Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev. 2023;193:114670.
  4. Shao Z, Yin T, Jiang J, He Y, Xiang T, Zhou S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact Mater. 2023;20:561–73.
  5. Wang G, Lin Z, Li Y, et al. Colonising microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev. 2023;194:114727.
  6. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560–82.
  7. Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Armstrong DG, Harkless LB, et al. The effects of ulcer size and site, patient's age, sex, and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet Med. 2001;18(2):133–8.
  8. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085.
  9. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.
  10. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–22.
  11. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.
  12. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23(6):594–608.
  13. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14.
  14. Peppa M, Uribarri J, Vlassara H. Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes. 2003;21(4):186–7.
  15. Jeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet. 2003;361(9368):1545–51.
  16. Tuttolomondo A, Maida C, Pinto A. Diabetic foot syndrome: immune-inflammatory features as a possible cardiovascular marker in diabetes. World J Orthop. 2015;6(1):62–76.
  17. Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H. Expression of matrix metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia. 2002;45(7):1011–6.
  18. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.
  19. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719–24.
  20. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.
  21. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29–34.
  22. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):e132–73.
  23. Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev. 2012;28 Suppl 1:119–41.
  24. Margolis DJ, Kantor J, Berlin JA. Healing of diabetic neuropathic foot ulcers receiving standard treatment: a meta-analysis. Diabetes Care. 1999;22(5):692–5.
  25. Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49(10):1541–9.
  26. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. 2014;(1):CD003557.
  27. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 1999;7(5):335–46.
  28. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.
  29. Cutting KF. Wound dressings: 21st century advances. J Wound Care. 2003;12(9):339–43.
  30. Jones V, Grey JE, Harding KG. Wound dressings. BMJ. 2006;332(7544):777–80.
  31. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7.
  32. Ezike TC, Okpala US, Onoja UL, et al. Advances in drug delivery systems, challenges, and future directions. Heliyon. 2023;9(6):e17488.
  33. Klasen HJ. Historical review of the use of silver in the treatment of burns. II. Renewed interest in silver. Burns. 2000;26(2):131–8.
  34. Gupta A, Silver S. Molecular genetics: silver as a biocide: will resistance become a problem? Nat Biotechnol. 1998;16(10):888.
  35. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
  36. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–74.
  37. Patil MP, Kim G-D. An eco-friendly approach for the synthesis of nanoparticles and the mechanism underlying antibacterial activity against pathogenic bacteria. Int J Mol Sci. 2017;18(5):1013.
  38. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1.
  39. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.
  40. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):1701503.
  41. Nethi SK, Mukherjee S, Das S, Patra CR. Recent advances in inorganic nanomaterials for wound healing: a review. Biomater Sci. 2019;7(7):2652–79.
  42. Zhang K, Bai X, Yuan Z, et al. Layer-by-layer assembled multifunctional nanoparticles for sequential delivery of antimicrobial and angiogenic agents in diabetic wounds. Biomaterials. 2020;257:120239.
  43. Wu Y, Li M, Liu X, et al. Antibacterial, angiogenic, and anti-inflammatory multifunctional hydrogels for chronic wound healing. Adv Funct Mater. 2021;31(13):2008852.
  44. Ghosh S, Ahmed S, Rahman MM, et al. Nanotechnology in wound healing: current trends and future perspectives. Pharmaceutics. 2022;14(6):1178.
  45. He M, Xu Z, Ding J, et al. Multifunctional hydrogel dressing based on photothermal therapy for infected diabetic wounds. Adv Funct Mater. 2023;33(3):2208764.
  46. Zhang X, Chen H, Zhang C, et al. Recent progress in smart hydrogel wound dressings for diabetic foot ulcers. Adv Sci. 2023;10(25):2300343.
  47. Xu X, Yu Y, Li M, et al. Stimuli-responsive polymeric nanocarriers for wound healing. J Control Release. 2024;362:54–73.
  48. Gong Y, Bu Y, Li Y, Hao D, He B, Kong L, Huang W, Gao X, Zhang B, Qu Z, Wang D. Hydrogel-based delivery system applied in the local anti-osteoporotic bone defects. Front Bioeng Biotechnol. 2022;10:1058300.
  49. Li P, Han L, Li P, et al. Layer-by-layer assembly of multifunctional nanoparticles for sequential drug delivery in wound healing. Acta Biomater. 2020;112:221–35.
  50. Gopalakrishnan V, Subramanian S, Sethuraman S. Silver–chitosan nanocomposite hydrogels for diabetic wound healing. Int J Nanomedicine. 2022;17:5415–28.
  51. Li J, Sun L, Li X, et al. Curcumin–resveratrol co-loaded PLGA nanoparticles accelerate diabetic wound repair. Colloids Surf B Biointerfaces. 2023;224:113182.
  52. Zhang X, Zhang Y, Xu T, et al. Zinc oxide nanoparticles integrated with insulin-loaded hydrogel for enhanced diabetic wound healing. Biomaterials Adv. 2022;139:213044.
  53. Ahmed M, Anwar M, Hassan M, et al. Gold nanorods conjugated with doxycycline and VEGF for photothermal-assisted diabetic wound healing. ACS Appl Bio Mater. 2021;4(7):5532–45.
  54. Li P, Wang H, Sun Q, et al. Layer-by-layer nanoparticles with dual growth factor delivery for sequential wound healing. Acta Biomater. 2020;113:303–16.
  55. Mohseni S, Bayat M, Valizadeh M, et al. Clinical evaluation of silver nanogel in diabetic foot ulcer treatment. Wound Repair Regen. 2021;29(3):435–44.
  56. Luan J, Zhang W, Liu Y, et al. Chitosan–silver nanocomposite film for clinical diabetic wound management. Int Wound J. 2020;17(7):1784–93.
  57. Ahmed R, Tariq M, Ali S, et al. Curcumin–honey nanoemulsion for diabetic foot ulcer therapy: a phase II clinical trial. Clin Cosmet Investig Dermatol. 2022;15:1459–72.
  58. Kamaruzaman NA, Chua KH, Tan AE, et al. Nanofiber scaffold with PDGF for diabetic wound healing: a multicenter clinical study. Tissue Eng Part A. 2023;29(7–8):357–69.
  59. American Biotech Labs. SilvrSTAT® Gel [package insert]. FDA 510(k) K103693. 2023.
  60. ConvaTec Ltd. AQUACEL® Ag+ Extra Hydrocolloid Dressing: Product Monograph. ConvaTec; 2023.
  61. Organogenesis Inc. DermaGraft® Prescribing Information. FDA Approval; 2001.
  62. Organogenesis Inc. Apligraf® Product Monograph. Organogenesis; 2022.
  63. Nanofiber Solutions LLC. Nanoskin® CE Certification Summary. Nanofiber Solutions; 2021.
  64. Janssen Pharmaceuticals. Regranex® (Becaplermin Gel 0.01%). FDA Approval; 1997.
  65. Smith & Nephew plc. Acticoat® Flex Series: Product Data Sheet. Smith & Nephew; 2023.
  66. Crawford Healthcare Ltd. KerraCel® Ag Gelling Fiber Dressing: Product Information. Crawford Healthcare; 2023.
  67. Shiekh PA, Singh A, Kumar A. Engineered nanocomposite hydrogel with sustained release of antibiotics and growth factors for diabetic wound management. ACS Appl Mater Interfaces. 2022;14(6):8291–306.
  68. Chen L, Deng C, Li J, et al. Multifunctional injectable hydrogel for diabetic wound healing with sustained delivery of insulin and antioxidants. Bioact Mater. 2022;14:102–17.
  69. Liang Y, He J, Guo B. Functional hydrogels as wound dressing for diabetic wound healing. Adv Drug Deliv Rev. 2022;186:114326.
  70. Xu H, Li C, Zhao Q, et al. Nanoparticle-embedded hydrogel dressing for combined antibacterial and pro-healing therapy. Chem Eng J. 2022;450:137964.
  71. Wu J, Zhao Y, Guo Y, et al. Photothermal antibacterial hydrogel based on gold nanorods and chitosan for diabetic wound therapy. Small. 2021;17(35):2103207.
  72. Luo Z, Jin C, Zheng Y, et al. Smart hydrogel integrating antibacterial and angiogenic effects for diabetic wounds. Adv Funct Mater. 2023;33(5):2209773.
  73. Bao Z, Wei Q, Lu Y, et al. Multifunctional nanoplatforms for diabetic wound treatment. J Nanobiotechnol. 2023;21(1):214.
  74. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–53.
  75. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.
  76. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–42.
  77. Boateng JS, Catanzano O. Advanced therapeutic dressings for effective wound healing—A review. J Pharm Sci. 2015;104(11):3653–80.
  78. Pandey H, Rani R, Agarwal V. Liposomal drug delivery in wound healing: role and future potential. J Drug Deliv Sci Technol. 2022;73:103452.
  79. Pereira RF, Bartolo PJ. Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle). 2016;5(5):208–29.
  80. Fan H, Guo M, Ma L, et al. Antibacterial, antioxidant, and angiogenic hydrogels based on chitosan nanoparticles for diabetic wound healing. Carbohydr Polym. 2023;305:120553.
  81. Wang Y, Zhang J, Li X, et al. Bimetallic Cu–Zn nanoparticles embedded hydrogel for diabetic wound healing through antibacterial and angiogenic effects. Chem Eng J. 2023;459:141531.
  82. Gao Y, Shi Y, Zhang Y, et al. Injectable thermoresponsive hydrogel with cerium oxide nanoparticles for diabetic wound healing. Bioact Mater. 2021;6(9):3251–64.
  83. Qi X, Huang Y, Jiang Y, et al. Injectable hydrogel with photothermal and antioxidative properties for diabetic wound healing. Chem Eng J. 2023;457:141037.
  84. Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–66.
  85. Gong C, Wu Q, Wang Y, et al. Injectable thermosensitive hydrogel loaded with graphene oxide and curcumin for healing of diabetic wounds. ACS Appl Mater Interfaces. 2017;9(11):8599–607.
  86. Chen S, Chen X, Chen H, et al. Smart hydrogel with pH-responsive and self-healing properties for antibacterial diabetic wound dressing. Adv Healthc Mater. 2022;11(8):2102606.
  87. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.
  88. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.
  89. Zang X, He J, Guo B. Multifunctional biomaterials for diabetic wound healing. Adv Healthc Mater. 2021;10(1):2001410.
  90. Xu X, Li M, Yu Y, et al. Stimuli-responsive hydrogels for chronic wound management. Adv Funct Mater. 2023;33(7):2210415.